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The activities of TiC and TiN in Ti(CN) solid solutions can be calculated by means of an
integration method. In order to obtain accurate activities for a given set of data, two
approaches were evaluated. A linear regression with one curve was found to be more
proper than a two-curve approach. The activity exhibited a strong negative deviation from
ideal solution behavior. The free energy of formation was obtained at given temperatures
using the activity values. Isothermal curves of the free energy of formation with respect to
composition had a minimum value near Ti(C0.3N0.7) and Ti(C0.6N0.4) at 1700 and 2100 K,
respectively. The investigation shows that the Ti(CN) solid solution cannot be treated as a
regular solution. Thus, a subregular solution model was introduced to describe the
temperature dependence of free energy. C© 2000 Kluwer Academic Publishers

1. Introduction
Ti(CN)-based cermets have gained great attention from
researchers as a potential replacement for WC in the
cutting tool field. The positive effects of nitrogen in
TiC systems have given rise to considerable research
in the area of cermet design for purposes of improved
performance. To date, only a few studies have reported
on the behavior of Ti(CN) solid solutions, which have
great potential in this area. Since the use of Ti(CN)
have become common in cermet applications, the phase
stability of Ti(CN) based on its nitrogen content dur-
ing high temperature processing is clearly an important
issue.

The activity coefficients of TiC and TiN in Ti(CN)
solid solutions were calculated based on the equilibrium
nitrogen pressures in forming Ti(CN). In this paper two
approaches for obtaining accurate values for the activ-
ities of TiC and TiN in the Ti(CN) solid solutions were
evaluated. The obtained activity values were used to
calculate the free energy of formation of Ti(CN) and
the behavior of the solution was tested via a regular so-
lution model. In addition a subregular solution model
was applied to this system, in order to predict the vari-
ation of the formation free energy with temperature.

2. Computations method
In the framework of a solid solution, composed of
TiC and TiN, the activities of TiC and TiN can be ex-
pressed as the following equations through the Belton
and Fruehan integration method [1]. The activity coef-
ficients were calculated using the equilibrium nitrogen
pressures at 1400–1500 and 1800◦C [2, 3]. A detailed
procedure for calculation has been reported in other
sources [4–6].
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For the integration of Equation 1, the value ofγTiC

γTiN
|XTiC=1

and γTiN

γTiC
|XTiN=1 is required as limits for the integration.

Because no information for these values exists, it is
necessary to estimate them from a plot ofXTiC versus
log(γTiN

γTiC
).

3. Results and discussion
3.1. Approach using a single linear line
In this case a single linear curve was employed in
order to determine log(γTiC

γTiN
)|atXTiC=1,0. The curves for

TiC and TiN are shown as linear, single curves in
Figs 1 and 2. Using the data points, integrations, based
on the regressed line and a pathwise integration from
log(γTiC

γTiN
)|atXTiC=1, were carried out to provide values for

aTiC. The same method was used for TiN and the final
results are plotted in Fig. 3. Closed and dotted trian-
gles and circles show the activities of TiC and TiN at
1700 and 2100 K, respectively. Solid and dotted curves
correspond to the closed and dotted symbols.

It was apparent that all the results exhibit negative
deviations from Raoultian. The activity coefficient of
TiC observing the Henrian law,γ o

TiC, is less than 0.2
at 1700 K and slightly larger at 2100 K. The curve
for 2100 K is located above that for 1700 K for ev-
ery composition. This trend is consistent with the fact
that the solution behaves more like a Raoultian solu-
tion as temperature increases. The activity (coefficients)
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Figure 1 XTiC Plotted as a function of log(γTiC
γTiN

) at 1700 K to obtain
limits.

Figure 2 XTiC Plotted as a function of log(γTiC
γTiN

) at 2100 K to obtain
limits.

Figure 3 The activities of TiC and TiN in Ti(CN) at 1700 K and 2100 K.

approaches unity as the mole fraction of its component
increases to unity.

3.2. Approach using double linear lines
In the previous approach, the calculation of activities
relies on the assumption thatXTiC is a straight line with
respect to log(γTiC

γTiN
). Darken [7] and Belton and Fruehan

[1] suggested the existence of three regions in most
A-B metallic solutions, i.e., two terminal regions having

Figure 4 Activity curves plotted using double linear lines.

different slopes and one intermediate region, for a plot
of XA vs. log(γA

γB
). Therefore, an approach with two or

three straight lines of different slopes was evaluated, in
order to achieve more accurate activity values, which
would be expected to provide a more precise initiation
point for the integration.

The composition range was divided into two regions
in this study and a different linear curve was applied to
each region. This was carried out using a small number
of data points as shown in Figs 1 and 2 and thus, the
applicability of this approach might be limited. Three-
region approximations were performed. Two terminal
regions of dilute solutions were approximated using
straight lines and the intermediate region was estimated
at the junction of the straight lines. The approximation
using two straight lines was merged, as shown in Figs 1
and 2. In each figure, two lines were employed for the
data ofXTiC vs. log(γTiC

γTiN
) to obtain a value for log(γTiC

γTiN
)

at XTiC=0 and 1. The activity coefficients were ob-
tained using the same procedure as was used in the
single line approach. It was found, however, as can be
seen in Fig. 4 that each curve not only has an abrupt
point but also a cross-over between the curves for the
two different temperatures. The abrupt points can be at-
tributed to improper treatment of the transition regions,
i.e., bridging one region with the other. Thus, a more
sophisticated treatment will be required for the case of
the abrupt point to provide a continuous smooth curve.

Based on the values in Figs 3 and 4, the approach in-
volving a single line appears to be an acceptable method
to calculate the free energy for the formation of Ti(CN)
solid solutions in the present system.

3.3. Characterization of Ti(CN) solutions
Based on the TiC-TiN solution model, a value for the
free energy of formation of Ti(CN) was obtained [8]
using the following equations and the data from JANAF
tables.

GM = XTiC1fG
o
TiC + XTiN1fG

o
TiN +1GM (2)

where1GM, the change in the free energy of mixing,
is equal to RT{XTiC ln aTiC+ XTiN ln aTiN}. In Fig. 5,
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Figure 5 The Gibbs free energy of formation of Ti(CN) (kJ/mol); the
minimum points ofGM,real are atXTiN ∼0.7 and 0.4 for the temperature
of 1700 and 2100 K, respectively.

GM,id andGM,real represent the absolute free energy of
formation based on ideal mixing of TiC with TiN, and
by using the above derived activity coefficients. The
GM graphs of 1700 and 2100 K were drawn as a solid
and dashed curve, respectively. The data in the figures
are those calculated by means of pathwise integration.

Each curve forGM,realhas a unique minima at certain
compositions. At 1700 K this minimum is located in the
nitrogen-rich composition (XTiN = 0.6–0.7). However,
the minimum point swings to carbon-rich composition
(XTiN = 0.3–0.4) at 2100 K. From this plot it demon-
strates that a stable composition exists for the various
temperatures, sinceGM is an indicator of the phase
stability of a material. The solid solution with a high-
nitrogen content would be expected to be more stable
at 1700 K, while that with a high-carbon content to be
more stable at 2100 K. The behavior of the solid solu-
tion at 1700 K is a little surprising since the nitrogen
in Ti(CN)-based cermets is known to have a destabiliz-
ing effect by dissociating in sintering at 1400–1500◦C.
However, the more negative isGM, the less a substance
evaporates or reacts. Thus, the composition with a mini-
mumGM value would be expected to be the most stable,
even if the stability region were to be extended further to
the compositions in the vicinity of the minimum point.

The variation of free energy with temperature can be
visualized when the excess Gibbs free energy,Gxs, is
obtained. In order to obtainGM as a function of temper-
ature,Gxs was calculated by means of some solution
models [9, 10]. A regular solution model was tested for
its applicability to Ti(CN) solid solutions. The heat of
mixing for a regular solution can be expressed by the
equation below;

1HM = Gxs = α′XTiC XTiN (3)

α′ has to be a constant which is independent of tem-
perature. However, the data shown in Fig. 6 cannot be
represented by a singleα′ value as in the case of a regu-
lar solution. It shows the temperature dependence. The
strong deviation from ideal solution behavior in Fig. 3
is evidence for this.

Therefore, it is necessary to treat theGxs of the so-
lution as a temperature function. By the addition of a

Figure 6 A plot for Gxs vs. XTiN.

temperature function,Gxs can be represented as Equa-
tion 4. The coefficient,a, is related to the extent of
deviation from ideal behavior. The value ofτ indicates
the degree of sensitivity ofGxs to temperature depen-
dence. The larger the absolute value ofτ , the weaker is
its dependence with temperature. Asτ increases,Gxs in
Equation 4 becomes close to that of a regular solution.
In fitting the data using Equation 4, the values ofa andτ
were calculated to be−6.94 and 889.9 K, respectively.

Gxs = aXTiC XTiN

(
1+ T

τ

)
(4)

A general function ofGM can be obtained from the
incorporation ofGxs into Equation 5 and the relative
stability can be estimated as a function of tempera-
ture. TheGM curves at some temperatures are shown
in Fig. 7.

GM = XTiC1fG
o
TiC + XTiN1fG

o
TiN + (1GM,id + Gxs)

(5)

As is seen in Fig. 7,1fGo
TiN is far more negative

than1fGo
TiC at lower temperatures. The value near

TiN increases rapidly compared with TiC. The free

Figure 7 Curves of the free energy of a solid solution of Ti(CN) using
Gxs calculated from a subregular solution model.
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energy near the TiN composition is lower than that
of TiC at low temperatures (below 1500 K), whereas
TiC tends to have lower values at higher tempera-
tures (above 2500 K). It means that the relative stability
among Ti(CN) solid solutions is strongly dependent on
the temperature.

4. Summary and conclusions
An analysis was carried out for obtaining the activ-
ity and free energy for the formation of Ti(CN). They
were calculated using a TiC-TiN solution model and the
Belton and Fruehan integration method. It was found
that a linear regression with a single curve was a more
proper approach than a two-curve approach in calculat-
ing the activity values. Activity curves are observed to
exhibit strong negative deviations from ideal solution
behavior. The free energy for the formation of Ti(CN)
was also obtained at 1700 and 2100 K by calculating
mixing energy terms using activities. Each curve of the
formation energy of Ti(CN) had a minimum point close
to Ti(C0.3N0.7) and Ti(C0.6N0.4) at 1700 and 2100 K, re-
spectively. This indicates that the stability of the solid
solution is a moderate temperature function. For an ex-
tension of the free energy of formation to other tempera-
tures a regular solution and a subregular solution model
were employed. The solution behavior is found to be
beyond a regular solution range and it appears to show
ordering tendency. However, based on the subregular

solution model, the sensitive dependence of relative sta-
bility on temperature could be described.
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